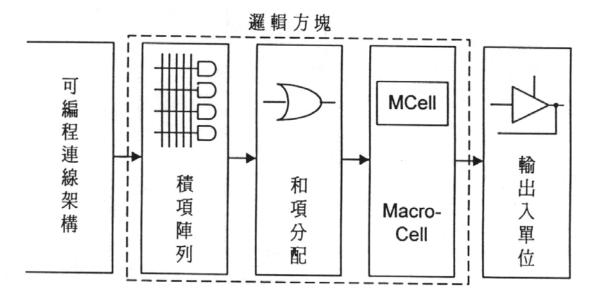

第一章 概論


- 1.1 邏輯晶片大致上分為標準邏輯(Standard Logic)【例如 TTL 的 74 系列及 54 系列, CMOS 的 40 系列等等】及應用規格積體電路(Application Specific Integrated Circuit; ASIC)
- 1.2 應用規格晶片 (ASIC) 可分為可程式邏輯元件 (PLD)、閘陣列晶片 (Gate Array)、細胞元晶片 (Cell-Based) 及完全訂製型晶片 (Full Custom) 等四類。若考慮成本及開發時間,則 CPLD 最佔優勢,也是為何 CPLD 會越來越受歡迎的原因。
- 1.3 PLD (Programmable Logic Device)可程式邏輯元件 為可程式邏輯元件的總稱,典型的 PLD 由一個可規劃的 AND 陣列和一個可規劃的 OR 陣 列所構成,而任何一個組合邏輯都可用 " **及-或** " 運算式來描述,所以,PLD 能以積 項之和(SOP)的形式完成大量的組合邏輯功能。

其產品有

- ◆ PAL(Programmable Array Logic):為 PLD 最早的產品,只能燒錄一次。
- ◆ EPLD(Erasable PLD):用 CMOS EPROM 技術,故可重覆燒錄,但需使用紫外光線清除資料。
- ◆GAL(Generic Array Logic):應用 EEPROM 技術,可重覆燒錄,且使用電子方式清除資料。
- ◆PEEL(Programmable Electrically Logic):內部結構與 GAL 相似,但可重覆燒錄 1000 次以上,壽命更長更實用。
- 1.4 CPLD (Complex Programmable Logic Device) 複雜可程式邏輯元件 早期多為 EEPROM 的技術背景,基於乘積項(Product term)的結構,可分為
 - (1). 巨集晶胞(Macro cell:簡稱 MC),而多個巨集晶胞的集合稱之為邏輯陣列方塊 (LAB),如 Altera MAX3000 系列 EPM3064ALC44-10 就是 64 個 Macrocells(巨集晶胞),44 支接腳,16 個巨集晶胞組成一個邏輯陣列方塊(LAB)共有 4 個邏輯陣列方塊。 (2). 可規劃互連陣列(Programmable Interconnect Array:簡稱 PIA):負責信號的傳遞。
 - (3). I/O控制方塊:負責輸入輸出信號的特性控制。

1.5 FPGA (Filed Programmable Gate Array) 現場可程式化閘陣列 CPLD/FPGA 之差別:

FPGA 最早由 Xilinx 公司發明,多為 SRAM 的技術背景,基於查表法 (Look Up Table;簡稱 LUT) 的結構,需外掛配置用的 EPROM (Erasable Programmable Read Only Memory)或 EEPROM (Electrically Erasable Programmable Read Only Memory), Xilinx 公司將 SRAM (Static Random Access Memory)技術(需外掛配置用的 EPROM 或 EEPROM)的 PLD稱為 FPGA,而將 Flash (類似 EEPROM)技術背景,乘積項結構的 PLD稱為 CPLD; Altera把自己的 PLD產品—MAX系列 (EEPROM 技術背景)與 FLEX / ACEX / APEX系列 (SRAM技術背景)都稱為 CPLD,由於 FLEX / ACEX / APEX系列也是 SRAM技術背景,與 Xilinx公司 FPGA 一樣,需外掛配置用的 EPROM或 EEPROM,所以很多人把 FLEX / ACEX / APEX系列也稱為 FPGA。

※比較:記憶體

- A: 唯讀記憶體(ROM)-電源消失時,資料可儲存不會消失。
 - # PROM→可規劃一次的 ROM, 其記憶體為附有保險絲的二極體矩陣, 由於燒錄後保險絲燒斷, 所以僅能燒錄一次。
 - # EPROM→(Erasable programmable ROM),將 PROM 的保險絲改為由 MOSFET 構成的電子開關,故可燒錄可清除(擦拭)資料,清除方法是利用紫外光線照射 15~30分鐘左右。
 - # EEPROM→(Electrically Erasable Programmable ROM), 燒錄及清除資料, 皆以電器方式來完成, EEPROM 是利用反向高電壓(12~15V)來清除資料, 只需數秒即可清除資料, 而清除時間與記憶體容量成正比。
- B:隨機存取記憶體(RAM)-電源消失時,資料亦會消失。
 - # SRAM → (Static RAM): 靜態隨機存取記憶體,資料存在正反器,資料的存取速度快,但價格貴且體積大,功率消耗大。
 - # DRAM→(動態 RAM)價格便宜,體積小耗電量低,常做為電腦的主記憶體,資料存在 閘極與源極之寄生電容上,寄生電容上的電荷會逐漸消失,須在資料不正 確前便予以刷新(refresh)。
- 1.6 CPLD與FPGA具有ISP(In System Program),可直接在電路上隨時規劃燒錄。

1.7 一般來說, PLD 的優點就是速度快、更改容易、易學、不佔空間... 等

一、速度快

PLD 的速度就是他的傳播延遲時間短,在高速中也能動作,一般典型值為每週期 50ns,即在 20MHz 的高速仍可動作。

二、更改容易

目前的 PLD 已 CMOS 化,可用電子式清除,因此可以立刻更改程式,對於測試或實驗幫助很大。

三、不佔空間

因為一顆 PLD 可以取代數顆 TTL 數位 IC, 所以電路中的 IC 數量自然減少,同時可使印刷電路板的面積相對的縮小,減少佈線及設計時間,又可降低成本。

四、簡單易學

若以傳統的數位 IC 組合成一個電路往往需要瞭解各個數位 IC 的功能,初學者容易摸不著邊,但若從 PLD 來學電路設計就容易多了。

五、設計與維護容易。

六、成本降低,可靠性增加。

1.8 晶片供應商

隨著可編程邏輯器件應用的日益廣泛,許多 IC 製造廠家涉足 PLD/FPGA 領域。目前世界上有十幾家生產 CPLD/FPGA 的公司,最大的三家是: ALTERA, XILINX, Lattice,其中 ALTERA 和 XILINX 佔有了 60%以上的市場份額

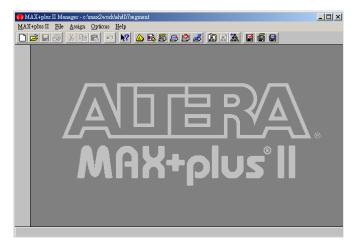
1。ALTERA: 九十年代以後發展很快,是最大可編程邏輯器件供應商之一。主要產品有:
MAX3000/7000, FLEX10K, APEX20K, ACEX1K, Stratix, Cyclone 等。開發軟體為 MaxplusII 和 QuartusII。
普遍認為其開發工具—MaxplusII 是最成功的 PLD 開發平台之一,配合使用 Altera 公司提供的免費 OEM
HDL 綜合工具可以達到較高的效率。

 $2 \circ \underline{XILIXN}$: FPGA 的發明者,老牌 PLD 公司,是最大可編程邏輯器件供應商之一。產品種類較全,主要有: XC9500/4000,Coolrunner(XPLA3) ,Spartan,Virtex 等。開發軟體為 Foundition 和 ISE。通常來說,在歐洲用 Xilinx 的人多,在日本和亞太地區用 ALTERA 的人多,在美國則是平分秋色。全球 PLD/FPGA 產品 60%以上是由 Altera 和 Xilinx 提供的。可以講 Altera 和 Xilinx 共同決定了 PLD 技術的發展方向。

3。Lattice: Lattice是 ISP 技術的發明者, ISP 技術極大的促進了 PLD 產品的發展,與 ALTERA 和 XILINX 相比,其開發工具比 ALTERA 和 XILINX 略遜一籌。中小規模 PLD 比較有特色,不過其大規模 PLD、FPGA的競爭力還不夠強 1999 年推出可編程類比器件。99 年收購 Vantis(原 AMD 子公司),成為第三大可編程邏輯器件供應商。2001 年 12 月收購 agere 公司(原 Lucent 微電子部)的 FPGA 部門。主要產品有ispLSI2000/5000/8000, MACH4/5, ispMACH4000等

4。ACTEL: 反熔絲(一次性燒寫) PLD 的領導者,由於反熔絲 PLD 抗輻射,耐高低溫,功耗低,速度快, 所以在軍品和航太級上有較大優勢。ALTERA 和 XILINX 則一般不涉足軍品和航太級市場。

5。Cypress : PLD/FPGA 不是 Cypress 的最主要業務,但有一定的用戶群,



6ATME1:PLD/FPGA不是 ATMEL的主要業務,中小規模 PLD做的不錯。ATMEL也做了一些與 Altera和 Xilinx兼容的片子,但在品性上與原廠家還是有一些差距,在高可靠性產品中使用較少,多用在低端產品上。

2 實驗環境

2.1 軟體

(1)、MAX+plus II Baseline 10.2 版 --Altera 公司發展之免費 EDA (Electronic Design Automation) Tools --- MAX + plus II Baseline;可接受繪圖編輯(電路圖)、文字編輯(硬體描述語言)及波形編輯三種設計方式

(2)、Quartus—Altera 公司另一套進階用的 EDA Tools,晶片支援種類較多,功能更強,但操作流程較為繁雜。

2.2 晶片

Altera 公司生產的 MAX3000 系列之 EPM3064ALC44

Table 1. MAX 3000A Device Features				
Feature	EPM3032A	EPM3064A	EPM3128A	EPM3256A
Usable gates	600	1,250	2,500	5,000
Macrocells	32	64	128	256
Logic array blocks	2	4	8	16
Maximum user I/O pins	34	66	96	158
t _{PD} (ns)	4.5	4.5	5.0	5.5
t _{SU} (ns)	2.9	2.8	3.3	3.9

44-Pin PLCC

- 3. MAX + plus II Baseline 程式的安裝
 - ◆下載程式及執行安裝
 - ◆申請 License—需 Email 及硬碟序號
 - ◆安裝 Driver—需安裝 Altera ByteBlaster 否則無法使用印表機阜(並列阜 Parallel)LTP1